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Fig. 1. Gesture is used to fly through a visualization of HIGRAD/FIRETEC simulation model data [1] rendered
by an open-source, real-time ray tracing application running on a cluster of eighteen displays.

We present an extension to OSPRay Studio, Intel’s open-source ray tracing application, to support immersive
virtual reality experiences in public exhibition settings. This extension enables one to display a single, coherent
3D virtual environment on tiled display walls and use gesture-based interaction techniques to navigate
the environment. Additional mechanisms are provided to configure the application for different display
arrangements and integrate other motion-tracking technologies.
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1 INTRODUCTION
Recent advances in graphics hardware have opened the door to move ray tracing rendering
techniques previously used in non-interactive mediums, e.g., films, into applications that benefit
from interactivity, e.g., data visualizations and games. Hardware ray tracing acceleration has been
added to the current generation of GPUs [8, 12] and hardware vendors have released optimized
high- and low-level libraries for ray tracing operations [13, 17, 18]. Ray tracing is now incorporated
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into popular visualization toolkits [2, 15, 16, 20] and it is part of the new Khronos Group standard
for analytical rendering [7].

We are interested in exploring the potential of these new, widely accessible rendering techniques
for public exhibitions. Inspired by CAVE VR systems [3, 4] that provide immersive experiences
with minimal body-worn devices, we introduce a system that extends an open-source ray tracing
application [14, 17] to display a single, coherent 3D virtual environment on tiled display walls and
support gesture-based interaction techniques (Figure 1).

The system is further extended to account for possible constraints imposed in public installation
spaces. To adapt to different display configurations, we provide an interactive tool with graphical
assistance for setting displays and their arrangements in a 3D space. To integrate a wide range of
sensing technologies, the part that handles gesture-based interaction is implemented as a separate
server application and a plugin to the rendering application to decouple the part from the original
application. Finally, containerized using Docker and Singularity/Apptainer [6, 11] the system can be
deployed in exhibition platforms with pre-existing demos that might require different dependencies.
This paper contributes an example of a real-time, interactive ray tracing application used in

interactive installation settings, which may indicate the recent advances in graphics hardware and
hint at incoming paradigm shifts in real-world computer graphics applications. Additionally, this
paper introduces design concepts and implementations that could be used in creating gesture-based
interactive installations for different space configurations.

2 DESIGN CRITERIA AND CORE DESIGN CONCEPTS
Our inspiration comes from various display and interaction technology combinations to provide
engaging approaches to exploring 3D content. For instance, in CAVE VR systems [3], a 3D virtual
environment is displayed on a surrounding display system to provide an immersive worldview with
support for 3D interaction techniques for object manipulation and scene navigation. A fish-tank VR
system provides a smaller virtual reality environment on a system that is a simple extension of a
desktop environment [19]. The setup choice depends on various factors [5, 10], such as visualizing
data, display availability, and sensing hardware. There exist frameworks for configuring the tiled
display setups, such as MinVR and UniCave, but these are for non-raytracing solutions. Our vision
is a ray tracing framework with the flexibility to support these different virtual reality setups. To
achieve this vision, we formulate the following design criteria:

C1 From a fish-tank VR to a CAVE VR, we need to support an arbitrary number of displays and
spatial layouts, and we should be able to display a single, coherent virtual environment on
these multiple displays.

C2 As VR setups promote different interaction styles, we should be able to extend the system to
support additional gestures and possibly integrate other motion-tracking technologies.

C3 As exhibition spaces have different sets of available hardware and space constraints, we
should be able to configure the system with minimum effort, e.g., without recreating or
rebuilding an application.

2.1 Design Concepts
As shown in Figure 2, our core concept is defining a view by arranging multiple, smaller
camera views, and each view is shown in a separate window to have the ability to arrange these
windows/views to form a larger, single, even non-rectangular view (C1). For cluster-driven displays,
the application can be extended to run on multiple nodes as separate processes, and workflows and
content in these processes are synchronized to display a single, coherent 3D virtual environment
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Fig. 2. Immersive OSPRay core concepts; (left) a view is divided into smaller views to display a 3D environment
on non-planar or even non-rectangular displays; (right) the application can be extended to support cluster-
driven displays, and the part that integrates sensor data is decoupled from the rendering application.

on these multiple displays. Also, to ensure user interactions do not conflict, a master process
handles all interactions.

We also introduce additional concepts to configure the application for different exhibition settings.
The application is containerized so that it can be run on the widest range of host systems possible.
To help with modifying the arrangement for different installation spaces, we provide display
configuration files and a 3D tool for specifying spatial locations of displays (C1, C3). The
part that handles user inputs is decoupled from the main rendering application to be able to integrate
a wide range of motion-tracking technologies (C2, C3). As some vendors’ SDKs only run on specific
platforms, the part that reads sensor data is implemented as a separate server application that
sends body tracking data to the rendering client on the master node. Also, the part that interpreted
the tracking data is written as a plugin to the rendering application so that a developer can
easily interchange different sets of gestures for interaction techniques.

3 DETAILED DESIGN AND IMPLEMENTATION
To implement the concepts, we build upon Intel’s open-source ray tracking application, OSPRay
Studio [14], and use Microsoft Kinect for motion-tracking sensors. We chose OSPRay as a starting
point as it has built-in support for MPI and plugins so that gesture-based interaction techniques
can be add-ons to default keyboard-mouse interactions. First, we extend their default camera
system to be able to show a 3D virtual environment by arranging multiple, smaller camera views
(3.1). Each camera view is shown in a separate window; we provide another mode of running
the application with the ability to open multiple windows and coordinate these windows (3.2).
We provide gestured-based interaction techniques by integrating a separate server application
sending tracking user data to a plugin to the rendering application (3.3). Finally, we provide
mechanisms for setting displays (3.4) and deploying to various settings (3.5). See our implementation
in https://github.com/jungwhonam/ImmersiveOSPRay.

3.1 Extending the default camera system
We extend OSPRay Studio’s perspective camera class so that its projection plane does not have to be
orthogonal to the viewing direction (Figure 2 (left)). In the previous version, a camera’s projection
plane is computed from the camera position, viewing direction, field of view, and aspect ratio.
However, as we no longer assume that the camera is placed on the symmetry axis of the projection
plane, we only use the camera position and require three corner positions of a projection plane. In
our case, a physical display replicates a camera’s projection plane. Thus, the three corners are the
corners of a physical display.
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Fig. 3. Integrating sensors and display layouts; (left) Gesture Tracking Server sends processed body tracking
data to the rendering application; (right) The configuration generator is built on Unity game engine to provide
3D object manipulation techniques for arranging display objects.

3.2 Opening and running multiple windows
We extend the built-in MPI support of OSPRay Studio to open and synchronize multiple windows.
At the start, the MPI application creates a process per node, and each process opens a window and
defines an off-axis projection camera based on values specified in the display configuration file (3.4).
We take additional steps to run these multiple processes in a synchronized fashion. After processing
user inputs, the master process updates values in a sharing object. Then, at the beginning of the
next frame, the object is broadcast to other processes, and each process updates its objects and
application states based on the shared values. Also, to ensure windows display rendering results
simultaneously, processes wait for others to complete the rendering processes before swapping
buffers. This is done by calling MPI_Barrier(. . . ) before glfwSwapBuffers(. . . ).

3.3 Gesture Tracking Server and OSPRay Studio Plugin
The server gets body tracking data from a Kinect sensor, parses the data (removing unnecessary
information, e.g., orientations of joints), and sends the data to connected clients (Figure 3 (left)). The
OSPRay Studio plugin handles the connection with the server, computes gestures from received
data, and keeps track of the latest state. When the plugin receives a message from the server, it
derives additional information from the body tracking data (see 4 for our implementation of a
flying navigation technique). The underlying scene is not updated immediately; OSPRay Studio
initiates the process of updating the scene from the latest tracking data. When the application is
in the phase of processing user inputs, e.g., key-pressed events, it calls a poll event method from
the plugin to get the latest tracking result and uses it to update corresponding 3D objects, e.g.,
changing camera locations.

3.4 Display Configuration File and Generator
At the start, the application reads a configuration file to set its cameras and arrange windows.
The JSON configuration file comprises an array of JSON objects, and each object represents a
display containing information about an off-axis projection camera and the window that shows the
camera view. Display Configuration Generator helps create the JSON file by providing a graphical
assistant in specifying and arranging displays in a system (Figure 3 (right)). The tool is built on
Unity game engine, allowing users to specify the positions of the three display corners and the
eye by referencing Unity objects in a 3D view. Additionally, this tool provides features for placing
these display objects around an axis and scaling a master display to fit all other displays.
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3.5 Containers
The application is containerized so we can run our application on a host system that also supports
DisplayCluster [9], a legacy application that relies on several well out-of-date supporting packages.
Since our primary target system is a Linux cluster driving a display wall, we use Apptainer[6] to
run the application container; this makes access to the cluster nodes’ displays and interconnect
transparent. The only requirements on the host are to have Apptainer and a version of MPI that
matches that used inside the container. We use OpenMPI 4.1.1 over Ethernet on our target system;
high-speed interconnects (when available) can be used by substituting the appropriate MPI support
in the application container. The definition of the container is included in our repo (section 3).

4 APPLICATION CASES
Based on the implementation, we created a proof-of-concept prototype that shows a 3D virtual
environment on tiled display walls driven by a cluster of nineteen PCs (Figure 1). Each node runs an
MPI-process that shows a window on display, and all the displays form a hemisphere providing a
surrounding view. A user moves around a 3D virtual environment by lifting both hands - pretending
to be a bird - and leaning the body to fly in that direction. When multiple users are presented in
the area, the user closest to the sensor is considered the primary user.
To come up with reliable flying interaction techniques, we used a demo application to test the

tracking capability 1: 1) Tracking of HANDTIP and THUMB joints becomes unreliable when hands
are moving, below a belly, or far away (more than 1.5 meters away from the sensor), 2) When a user
is far away, tracking of HAND joints becomes unreliable; confidence-levels become NONE or LOW,
meaning that the joints are out of range or not observed, and 3) Joints on large body parts, e.g.,
WRIST and CHEST, can reliably be tracked even when a user is far away from the sensor, meaning
the joints’ confidence-levels are at least MEDIUM. Based on these observations, we decided to
design our interaction techniques using joints on large body parts, e.g., WRIST joints, and ignored
using joints such as HAND, HANDTIP, and THUMB.

Based on this decision, we created an interaction technique for flying through a 3D virtual envi-
ronment. Lifting both hands above a belly button triggers a flying mode. Once in the mode, a camera
moves into a body-leaning direction. When y-position ofWRIST is above that of SPINE_NAVEL, the
hand is considered as lifted. The leaning direction is computed by projecting the vector from NECK
to SPINE_NAVEL to a x-z plane. The projected direction vector is then used to move the camera. As
the vector was projected to a x-z plane, the camera does not move up or down.

5 OUTLOOK
Immersive OSPRay provides a series of tools for building interactive installations using an open-
source ray tracing application and off-the-shelf motion tracking sensors. Our initial implementation
could be helpful to the community as it provides a starting point for creating installations that could
be used in different exhibition scenarios. These include: 1) using a fish-tank VR to show 3D models
smaller in scale, such as medical data, and 2) integrating gesture-based interaction techniques to
showcase visualizations in other toolkits such as ParaView and VisIt. Additionally, we plan to
implement the concept with other ray tracing frameworks, such as OptiX, and support additional
gestures by upgrading our server and plugin.
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